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Abstract--A two dimensional model of a steady flow of a suspension in an inclined channel is developed 
and studied with the aid of an integral method. The model explains the existence of two operational modes 
in such a channel, predicted earlier by Probstein et al. (1977). 

I N T R O D U C T I O N  

The lamella settler (LS) is a clarifier consisting of parallel channels, formed by a number of 
inclined plates, stacked as shown schematically in figure l(a). The slurry, containing the solid 
particles to be clarified, is fed into the channels. The sludge consisting of the settled particles 
slides down the bottom wall of each channel and is collected through small orifices in the 
bottom ends of the channels. Meanwhile the clarified liquid, "squeezed" up by the heavy 
column of suspension, appears at the top fo the channels and is removed. 

Probstein et aL (1977) have suggested a locally one-dimensional model (referred to below as 
Model I) for describing the dynamics of lamella settlers. An analysis based on Model I 
disclosed the possibility of the existence of two alternative operational regimes of LS for a 
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Figure 1. (a) Schematic diagram of lamella settler. The (b) subcritical and (c) supercritical retimes. 
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given clear water overflow: the subcritical and supercritical operational modes. In the sub- 
critical regime the suspension occupies most of the channel and the interface separating the 
clear water from the suspension moves up the channel (see figure lb). In the supercritical 
regime an opposite situation takes place (figure l(c)). 

The existence of two alternative operational modes, derived from Model I and observed 
experimentally (Probstein & Hicks, 1978) is of potential importance for LS technology. (There 
are reasons to believe that the supercritical mode, which has not been exploited in LS practice, 
possesses some important advantages as compared to the subcritical one.) 

Model I was built upon the following essential assumptions: 
(1) It was assumed that there are three layers of viscous, immiscible fluids present in the 

channel: clear water, suspension and mud. 
(2) The movement of the liquid layers was treated as a steady, laminar, fully developed 

gravity flow between parallel inclined planes. (The bottom end of the channel was assumed 
closed so that the net volumetric flow through the channel was taken equal to zero.) 

In addition to these assumptions several other less essential ones were introduced. 
The existence of two alternative operating modes came out of Model I as a nonuniqueness of 

a numerical solution of a set of algebraic equations describing the position of the interfaces 
between the liquid layers and the coefficients of the corresponding parabolic velocity profiles as 
functions of the "clear water" flow. The nature of these two regimes remained unclear. 
Moreover, the essentially one-dimensional approach of Model I left unclear the connection 
between the conditions at the entrance to the channel (such as the initial thickness of the layer 
occupied by the suspension, etc.) and the asymptotic establishment of one or the other of the 
alternative operational regimes far from the entrance to the channel. The present paper 
investigates by a multi-phase two dimensional flow model the approach to LS dynamics 
suggested by Probstein et  al. (1977) and in particular clarifies the nature of two above 
mentioned alternative operational regimes. 

The aim of section 1 is to establish a connection between the approach adopted in Model I, 
as represented by assumption l, and the standard methods of the theory of two-phase flows. To 
this end we formulate in section l the boundary value problem describing a three dimensional 
two-phase flow of a suspension in a channel. It is shown that this boundary value problem can 
be reduced approximately to one of a gravitational flow of two immiscible fluids with a 
macroscopic interface, whose position has to be determined. In section 2 a simplified two- 
dimensional model is analyzed based, as in Model I, on the assumption of immiscibility of the 
liquids flowing in the channel. This model, investigated with the aid of a simple integral method, 
explains the existence of the alternative operational modes. Furthermore, it enables one to 
relate the realization of a particular mode to conditions at the entrance to the channel. 

1. EQUATIONS OF STEADY. LAMINAR TWO-PHASE FLOW OF A 
SUSPENSION IN A CHANNEL 

A detailed account of questions related to the formulation of the equations of two-phase 
flow can be found in Ishii (1975), Soo (1967) or Pai (1977). We emphasize that the form chosen 
below for the equations is by no means unique, but rather one of several equivalent forms (e.g. 
Ishii, 1975). Consider a steady laminar flow in a channel of a suspension composed of a viscous 
incompressible fluid and identical solid particles suspended in it. We suppose the particles to be 
large enough to make their Brownian diffusion negligibe. Introduce the notation: pl--density 
of a particle; c--volume fraction of particles; p0--density of the liquid; Vl--average local 
velocity of the particles; and ¥0--average local velocity of the liquid. 
We define: 

The average density of the suspension p 

p = cp~ + (1 - c)po .  [1.1] 
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The average volumetric velocity of the mixture W 

W = cVI + (1 - c)Vo. 

The average mass velocity of the mixture U 

U = [ C p l V l  + (1 - c)poVo]/p. 

The conservation laws used in what follows are: 

Conservation of mass 

div (pkckVk) = 0 k = 0, 1. 
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[1.2] 

[1.31 

[1.4] 

Conservation of momentum 
The momentum balance equation for the mixture under consideration is of the form (see 

Pai 1977) 

[1.5] p(U. V)U = - VP + pg + V. a-. 

Here we have introduced the notation: P--pressure; g--gravitational acceleration; and (r-- 
average deviatoric stress tensor. 

Equation [1.5] has generally to be supplemented with another momentum balance equation 
for one of the mixture's components. Though, we assume, as is often done (e.g. Haase 1%9, 
Hill et al. 1977, Acrivos & Herbolzheimer 1979), a complete local relaxation between the 
momenta of the different components of the mixture. A common version of this assumption is 
the slip hypothesis used here, of the form: 

Vl = W+/3f(c). g. [1.6] 

Here f(c) is a function of the volume fraction of the particles which characterizes their 
interaction, and /3 is a constant. For the simplest case of noninteracting spherical particles 
if(c) - I)/3 is determined by Stokes formula 

2p l -PoD 2 /30-~ ~ ~0 [1.7] 

where/x is the viscosity of the liquid and Ro is the radius of the particle. 
The system [1.1]-[ 1.8] has to be supplemented with a constitutive relation for ~. We content 

ourself with the simplest possible choice (see Pai 1977) 

[i .8] ,rau~ ~ 2auk_ 1 
= ax, -3   'JJ • 

Here #(c) is the effective viscosity of the suspension, 8 o is a unit tensor and a summation is 
carried out over a repeated subscript. 

The formulation of the basic equations is complete and we rewrite them below in a form 
convenient for future use. From [1.5] and [1.8] 

p(u.  v)u = - vP  + pg + tzau + ~ v ( w ) .  [1.9] 



476 L RUBINSTEIN 

Furthermore, from [1.1], [1.4] 

where 
div U + Ap div cU = 0 [1.10a] 

Ap : Pl -/)o. [l.lOb] 

Using [1.6], [1.2] and [1.3] one obtains from [1.4] with k = I 

where 
div cU + div [F(c)/~g] = 0 

F(c)= c c(~l+~--l_) ~ f(c). 
Pl [ -  )Po 

[1.11a] 

[1.11b] 

Equations [1.9]-[1.11] fully describe the flow of a suspension within the adopted approximation 
of a purely convective, locally relaxed flow. 

It should be noted that from [1.4] and [1.11] it follows that the volume fraction of the 
particles is conserved along their trajectories. In other words, if the particle concentration 
(volume fraction) is constant and equal to co at the entrance to the channel (an assumption 
made everywhere below) it will remain so in every place where the particles are brought by the 
flow. Thus the whole channel can be considered divided into two regions: one in which the 
volume fraction of the particles is constant and equal to Co (the suspension) and the other one 
into which no particles arrive (the clear water). These two regions are separated by a "limiting 
particle trajectory" representing an example of a kinematic shock common in the theory of 
two-phase flows (Ishii 1975). It is the inevitability of the formation of such a shock that is 
responsible for the enhancement of sedimentation in an inclined channel, known as the Boycott 
effect (Hill et al. 1977, Acrivos & Herbolzheimer 1979). 

As described, the flow of suspension is reduced to a purely hydrodynamical problem of the 
flow of a viscous liquid with a piecewise constant density and with an unknown location of the 
surface of discontinuity. In the regions of constant density the flow is described by [1.9]-[1.11] 
with 

and 

C(2) ~___ C0 ' p(2) = C0pl +(1 -- Co)Po [1.12a] 

c °) = 0,P (l) =/9o [1.12b] 

where the superscripts 1, 2 refer to the "clear water" and "suspension" respectively. For the 
sake of simplicity of presentation we have excluded from the consideration the thin mud layer 
adjacent to the bottom of the channel made up of the sedimented particles. For the same reason 
we will restrict ourself in the following sections to considering the flow in a vertical channel. It 
was pointed out by Probstein et al. (1977) that the presence of the thin layer has little influence 

on the dynamics of the flow as a whole. 
Equations [1.9]-[1.12] must be supplemented with conditions at the unknown surface of 

density discontinuity, S, namely: 

(1) Kinematic condition 

Vi" nls =0 [1.131 

which expresses the fact that there are no particles crossing the surface of the density 
discontinuity. Here n is normal to S and V1 is the particle velocity. 
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(2) Condition of continuity of the tangential velocity component 

[Ut]s = 0 [1.14a] 

where [] denotes a jump.t 

(3) Condition of local equilibrium of the interface 

[•" n]s = 0. [1.15] 

We have assumed here that the surface tension of the discontinuity surface S is equal to zero. 
The system [1.9]-[1.15] together with [1.3], [1.6] and [1.8] supplemented by the boundary 

conditions at the fixed boundaries represents a boundary value problem with respect to the 
position of the surface of density discontinuity and the fields of pressure and mean mass 
velocity. In the following sections the system will be studied in detail for a particular example. 
However, we point out here that according to [1.2], [1.3] and [1.6] 

where 
VI = U + V: [l.16a] 

(I - c)po ,(c)~ 
V t = cp~Sr~-Z_C)po ! /~g. [1.16b] 

For a typical particle p1-2000kg/m 3, / z -  10 -3 kg/ms, so that V¢- 10 -5 m/s. Thus, in those 
cases where the mass velocity component in the g direction at the surface of discontinuity is 
much larger than this value, it appears natural to neglect the terms V/as compared to U. gig. A 
"limiting" particle trajectory then becomes a "limiting" mass velocity streamline, and the flow 
in the channel can be treated as one of immiscible fluids. This assumption will be adopted in 
what follows. Its admissibility should, of course, be checked a posteriori by comparing the 
calculated values of U. g/gls with V:. 

2. A STEADY FLOW OF IMMISCIBLE FLUIDS IN A VERTICAL CHANNEL 

2.1 The basic boundary value problem 
Let us consider a semi-infinite vertical channel of width h, closed at infinity, and in which 

there is a steady two-dimensional flow of a suspension. The volume flux of suspension 0 is fed 
into the channel through an orifice occupying a specified fraction of the channel's width. (We 

here denote dimensional variables with the overbar "'".) The volume fraction of particles Co in 

the suspension is assumed constant (see figure 2). We assume that solid particles are removed 

instantaneously from the system at infinity. Thus, at steady state, the channel can be considered 

divided into two regions: one occupied by suspension with a constant density p= 

copl +(I- Co)po and another of "clear" water with density po<9, separated by a density 
discontinuity interface 8(x) (the axes are directed as shown in figure 2). The suspension and 

"clear" water are treated as immiscible viscous fluids in the sense of section I. The channel is 
assumed vertical in order to exclude from consideration the complications connected with 
particle deposition on the wails. (The angle of inclination of the channel is of crucial importance 

tFrom [1.10], [1.11] the condition for the jump in normal velocity is 

It can be seen that fulfillment of [l.14b] follows from [1.Iil and [l.14a]. 

[l.14b] 
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Figure 2. Geometry of flow in a vertical channel. 

when considering the stability of the steady flow. Stability questions however, are not 
considered in the present work.) 

We shall begin by considering the flow in creeping approximation (though the Reynolds 
numbers for practically relevant flows in lamella settlers are in the range 1 < Re < 500). We start 
with the creeping approximation because of its simplicity and the idea that it will lead to 
qualitatively instructive results. Inertial effects will be considered in section 2.6. 

For the stated assumptions the equations of section 1, written in dimensionless variables, 
become 

~¢WUi=--z- -Gi ,  i = 1,2 [2.1] 
a x  

rliVZVi = OPi i =  1, 2 [2.2] 
Oy' 

8Ui+OV~=o, i =  1,2. [2.3] 
8x 8y 

Here the subscript i =  1 refers to region I (see figure 2), occupied by the "clear" water, i - 2  
refers to the region II occupied by the suspension. The dimensionless longitudinal and 
transverse coordinates are given by x = (~,/h), y = (~/h), velocity components are U = ((J/Uo), 
V = ('("[Uo) (the normalizing constant Uo will be specified later). Furthermore ~1 = 1, ~2 = 
(/z2/tq), Gi = (p.,gh2[ Uop.O while Pj = (Pi/t~l Uo) is the dimensionless pressure. 

Taking into account the zero volume flux through the channel condition [1.16] transforms to 

8tx) U1 dy = - Q. [2.4] 

Here Q = (QJUoh) is the dimensionless volume flux of suspension and 6(x)= (6(x)lh) is the 
dimensionless thickness of the "clear" water layer. Continuity of mass velocity at the interface 
leads to 

U, Ir=~(~) = U21y=~¢x) [2.5] 

(an analogous equality for Vt, V2 follows from the continuity equation [2.3]). Condition (1.15) 
yields 

. + zr , 7 x ] - 0 [2.61 
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for the tangential stress component and 

x ~ ] \ t~X X / Jy=8(x) 

for the normal stress component. Here 

_ 8 b 1 
nx = X/(1 + 6'2) ' n~ = ~ [2.8a, b] 

are the components of the interface normal in the x and y directions, respectively. Finally, the 
condition of zero volume flux through the channel reads 

f:< fj U, dy + /,/2 dy = 0. [2.9] 
J0 (x) 

Equations [2.1]-[2.9] must be supplemented by the no-slip conditions at the channel walls: 

Ully=O-~- Vlly=o: U21y: 1 ~-- V21y: 1 = 0 .  [2.10] 

Formulation of the nonlinear boundary value problem [2.1]-2.10] for U/, V/, Pi, 6(x) (i = l, 2) is 
thus completed by applying the appropriate entrance conditions at x = 0 and requiring the 
solution be bounded as x--, o0. 

2.2 The integral method 
We propose to treat the boundary value problem [2.1]-[2.10] by means of a simple integral 

method. The procedure to be adopted is as follows. 
We approximate the longitudinal velocity components U~ by polynomials of the form 

Ul(x, y) = Al(X)y 2 + Bl(x)y [2.11] 

U2(x, y) = A2(x)(1 - y)2 + B2(x)(1 - y). [2.12] 

The profiles [2.11] and [2.12] satisfy the boundary conditions [2.10]. 
Furthermore, one has from the continuity equation [2.3], taking into account [2.10], 

y3 .~ ,. ~ y2 
VI = - -  AI'(x) -~- - ui tx) ~ [2.13] 

and 

V2 = A2' ( ~  + B2' 
(1 y)2 

2 [2.14] 

Substitution of [2.13] and [2.14] into [2.2] yields after integration 

, , ] 
P,(x, y) = P,°(x)- '11 [~, -f~,-,.,l "~-" ~i  y + BI'y [2.15] 

P2(x ,y)=P2°(x)- -  [A " ( I -Y)4+  ~ - ~  , h i  2 12 B2" +A21(1-y)2+B21(1-y). [2.16] 

Here Pl°(x), P2°(x) are unknown functions of x alone which have to be determined. 
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The next step is to require [2.1] to be fulfilled in an integral sense over the regions 0 < y < 6 

3 1 + 26 [2.27] 
A1 = ~ Q 83(1 _ 6) 

3 3 - 2 6  
A2 = - ~ Q 6(7_6)3 [2.281 

1 
BI = - 3Q 62(1 _ 6) [2.29] 

for i = 1 and 6 < y < 1 for i = 2, respectively. Namely, we write 

o '~x,[- (a2U1 O2U"~-OP'+G,]dy=O [2.17] 

and 

tx) [ "02~-~x2 + OY 2 } -  +G2 d y = 0 .  [2.18] 

Substitution of [2.11] and [2.12] into [2.17] and [2.18] yields after integration 

f nlLAlW-~+ B~W- ~ - = - G~ [2.19] 

and 

r12[A2,v(l-6)4+B2tV(124)3 2 6)+2A2] P2 °' 60 -" +~A2n(1-6)2 + B2n(1 . . . .  G2. [2.20] 

Equations [2.19] and [2.20] are the integral versions of momentum equations [2.1] for the 
longitudinal velocity components. 

Substitution of [2.11] and [2.12] into condition [2.5] yields 

al62 + Big = A2(1 - 6) 2 + B2(1 - 6). [2.21] 

In order to simplify the algebra further, we assume next 

I21 = tz: =/z(n2 = 1). [2.22] 

With [2.22] in mind we obtain upon substituting [2.11]-[2.16] into conditions [2.6] and [2.7], after 
some transformations 

2A~6 + Bl + 2A2(1 - 6)+ B2 = 0 [2.23] 
and 

- p,°+ rh(A,n164 , n m S-~6 )= - p2° +,o2(A2m (l ~)4+ B2'n (166)3 ) ~- nl  . [2.24] 

Finally, conditions [2.4] and [2.9] transform into 

6 3 6 2 
a l  7 +  BI ~ = - Q [2.25] 

63 62 A 2 ~ + B 2 ( 1 - 8 ) 2 _  
A ~ T + B ~ +  2 - 0 .  [2.26] 

On solving [2.21], [2.23], [2.25] and [2.26] for Ai, Bi (i = 1,2) one obtains 
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1 
B2 = 3Q 8(1 - 3) 2. [2.30] 

Substracting [2.20] from [2.19] and using [2.24] for expressing r)Ol r)01 r 2 - r ~ leads after some 
transformations to 

l [aztV(1- 8)5- AitV(1- 8)64] + l [B2'V(1- 6)4- BitV63(1- 6)] 

2 
+ AI n S-~+ BI II 6~+(AI -A2)(I + ~14)(I-8) = (G2-GI) I2 6 [2.31] 

which reduces [2.19]-[2.26] to a single nonlinear ordinary differential equation for the interface 
location 6(x). Before we solve this equation numerically in section 2.4, we shall discuss the 
asymptotic behavior its bounded solutions (section 2.3). These asymptotic solutions correspond 
to developed channel flows which are observed in the lamella settlers far enough down from the 
feeding orifice, and described by the one-dimensional model due to Probstein et aL 

2.3 Bounded, monotonic asymptotic behavior of the interface 
One has, for an interface bounded and monotonic far from the entrance to the channel, 

assuming that all the derivatives in [2.31] tend to zero as x-->oo, 

or, using [2.27], [2.28] 

and in dimensional form 

A : -  A2 ® = (G2 - GO/2 

G 2  - GI 8=3(i _ 800)3 
Q =  3 

[2.32a] 

Apg ~3 
(~ = ~ ~3- (h - g=)3 [2.32b1 

where Ap = p - po. The normalizing constant for the velocity Uo is now naturally fixed as 

Uo = Apgh2 [2.32c] 
/z 

The expression [2.32b] for a developed gravitational flow of a stratified liquid in a channel is 
well known (e.g. Yih 1965, Graebel 1960). One obtains, solving [2.32a] with respect to 8® 

8®1.2 = (1 -+ V'(1 - 4Q0)/2 [2.33a] 
where 

( 30 
Q' = k ~ ]  " [2.33b] 

We conclude from [2.33] that for any mass flux of the suspension Q into the channel such 
that Q < ((72 - G1]192), there are two possible positions of the interface at large distances from 
the entrance. Thus the positive sign in [2.33a] corresponds to a suspension asymptotically 
occupying less than half of the channel width with an interface asymptotically moving down the 
channel (this can be easily checked by substituting 8®1 into [2.27]), [2.29], [2.11] and [2.12]. 
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Similarly, the negative sign in [2.23a] corresponds to a suspension asymptotically occupying 
more than half of the channel width with an interface moving up the channel. The first case 
corresponds exactly to the supercritical regime described by Probstein et al. (1977) and the 
second case to the subcritical regime of these authors. Our goal will be to describe the 
development of one or another of the asymptotic regimes, depending on conditions at the 
entrance. Since our analysis is carried out on the basis of the integral method described above, 
it seems appropriate to test the method on a simple, although nontrivial example, for which an 
independent solution is known. We point out that the only source of motion in the region of 
developed flow, described by the expressions [2.31], [2.27]-[2.30], [2.11]-[2.14], is the density 
difference between the adjacent parallel liquid columns. The character of the flow in the 
transition region, and the choice between the possible asymptotic behaviors is obviously 
determined by conditions at the entrance to the channel, in particular by the value of 8(0). (At 
the same time it is by no means obvious that solutions with the asymptotic limits [2.33] are 
realizable for any Q < (G~ - G2/192), that is that these asymptotic limits are reachable from the 
entrance for any given 0 < 6(0)< 1.) For a homogeneous fluid an immediate analog of the 
situation described would be a creeping jet supplied to a part of the entrance of a channel, 
closed at infinity and filled with fluid (see figure 3a). It is clear that, in the absence of density 
stratification, the velocity disturbances caused by the jet would decay towards the closed end of 
the channel. This example has been used in order to test the efficiency of the integral method 
described above (see Appendix for details). The appropriate solution based on the above 
integral method predicted decomposition of a jet entering such a "dead" channel, into a 
sequence of decaying sing altering vortices (figures 3b). A comparison with an independent 
solution by Moffat (1964) has demonstrated a good agreement which encouraged us to apply the 
described integral method to the problem of nonhomogeneous flow under investigation. It is 
worth mentioning that a neglect of the transversal "viscous" pressure variation, in the example 
of a creeping jet, eliminated the jet's decomposition into vortices and lead to its monotonic 
decay. A similar neglect of the transversal pressure variations in the nonhomogeneous case is 
discussed in the beginning of the next section. 

O 
n) 

Ion 1 
~x 

b) 

c) ) ~x 

Figure 3. Jet in a "dead-ended" channel. (a) Geometry. (b) Sketch of streamlines in the creeping regime. 
(c) Sketch of streamlines in the inertial regime. 
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2.4 Study o[ a gravitational stratOfed flow in a channd by means of the integral method 
Before we solve [2.31] numerically, let us construct a qualitatively instructive analytical 

solution of a simplified equation, obtained by neglecting the transverse pressure variations 
within the channel. It is easy to see that in this approximation the order of the equation for 8(x) 
reduces from fourth to second and one hhs instead of [2.31] 

AIII T..t_B 1 8 2  I1 ~ + 2(A, - 8  A2)(1 - 8 )  = (G2 - G,)(1 - 8). [2.34] 

Upon substituting [2.27]-[2.29] into [2.34], one obtains after some transformations 

8 tt + 4 8  I2 - -  

1 

8(i-?) 
G2 - Gi  82(1 - 8)  2 

Q 1 
[2.35] 

The substitution 

812 [2.36] 
( - 2  

then leads to the equation 

1 

d__.~ + 8( 8(1 _ 8) _ d (  8 - ~  G._.12.3~.G 82(1_8)2.1-8 - - 1 8 - 1 (  1 -  8)_1(8 _~)- i  

2 

[2.37] 

which is linear with respect to (. Solving [2.37] one obtains 

((8) = 15684(1 - I n X/(8(1 - 8)) ( 43 

+ 8/38(1 - 8) + 1/2 + c84(1 - 8) 4 

G%-Gt) + 283(1 - 8)3(43 G~QG2) + I682(1- 8)2 

[2.38] 

where c is a constant of integration. The solution of [2.35] is obtained from [2.37], [2.38] in 
implicit form as 

1 ( 8 ~ )  d~" 
x = ~72 Jso _ V(((r)) [2.39] 

where 80 = 8(0). 
The choice between the two possible asymptotic limits for 8(x) as x--, ~ becomes clear from 

considering [2.38]. Indeed, one sees from [2.38] that ( =  8n/2 has a logarithmic singularity at 
8 = 1/2. This means that a solution of [2.35] with a bounded mechanical energy density cannot 
cross the line 8 = 1/2 in the (8, x) plane. (It follows from [2.13], [2.14], [2.27]-[2.30] that the 
non-boundness of 8' at any point means a non-bounded growth of VI, V: at the same point, and 
this leads to a non-bounded mechanical energy density). Thus, the realizable asymptotic 
solution 8= must be in the (x, 8) plane on the same side of the straight line 8 = 1/2 as 8(0). The 
constant c in [2.38] is found from the condition x--,oo as 8--)00. One obtains 

c 1 r - , .  X / ( 1 - 4 Q I )  3 1 3 3 1 
=-~414[16QI In 2v'Q, (4 -~ -~ l )+2Qi  ( 4 - ~ ) + 1 6 Q t 2 + ~ Q , + ~ ] .  [2.40] 

MF VoL 6, No. 5=-=G 
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In figure 4(a) are presented typical examples of the behavior of ~" = ll2(d~]dx) 2 with ~ for 
different values of the parameter Q1. It is clear from figure 4(a) that the interface defined by 
[2.39] behaves monotonically, and the sign in [2.39] is determined uniquely by the value of 8(0) 
in a way that makes the phase point move towards the branch point (8 = fi~, d~/dx -- 0). Let us 
sketch the behavior for ~0 < 1/2 (subcritical regime). In figure 4(b) the dependence of d~]dx on 8 
is shown for the data of figure 4(a). It is clear from figure 4(b) that the case 80 < 6~ < 1/2 
corresponds to the positive sign in [2.39] whereas 8~ < 8o < 1/2 corresponds to the negative sign 
(the continuous lines in figure 4(b)). The corresponding behavior of the interface is shown 
schematically in figure 4(c). The behavior for 8o> 1/2 (supercritical regime) is analyzed 
similarly. 

Recall, that the expression [2.39] predicting a monotonic behavior for the interface, was 
obtained neglecting the transverse pressure variations. Let us remove this assumption and 
return to the full equation [2.31]. The equation was solved numerically, taking into account 
[2.27] and solutions were sought which were bounded and monotonic as x ~ ,  for different 
values of Q, 8(0). The solutions were constructed by "shooting", using a fourth-order Runge- 
Kutta method. Some typical results are presented in figure 5. Two qualitatively different 
transition regimes to the asymptotic limits are indicated: (1) a monotonic one, for the case when 
the initial thickness of the suspension ("clear" water) layer is greater than its asymptotic value, 
in the super-(sub-) critical regime; (2) a nonmonotonic regime, which becomes more 
pronounced as the discharge Q increases, for the case when the initial thickness of the 
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Figure 4(a). Calculated interface slopes in the creeping tlow approximation, neglecting transverse pressure 
drop. 

Figure 4(b). Sketch of interface slope in the creeping flow approximation, neglecting transverse pressure 
pressure drop. 

Figure 4(c). Interface behavior in the creeping flow approximation, neglecting transverse pressure drop. 
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0.729.10 -4 m2/s. 

appropriate layer is much smaller than the corresponding asymptotic value. The observed 
nonmonotonicity of the interface, resulting from the transverse"viscous" pressure variations, 
corresponds to the formation of vortices in the case of the homogeneous creeping jet, 
mentioned above (see also the Apendix). 

We would point out that in the course of numerical simulations at large Q( -  2.5 x 10-3), it 
turned out to be impossible to construct interfaces analogous to those marked 1 and 2 in figure 
5(b). This was because in these cases the "crest" of the nonmonotonic interface crossed the 
singular surface 8 = I/2 and as a result, the numerical procedure blew up. 

2.5 Inertial effects 
Here we remove the assumption of creeping flow, which was introduced in section 2.1 to 

simplify the problem, at the same time we retain the other principal assumptions made there. 
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Equations [2.1] and [2.2] with the inertial terms assume the f o r m  

OP, r~( V, ~, ,  + U _~x / [2.41] n ' v ~ u '  =-~-x - G, + ou,'~ 

niV 2 Vi = ~ + -~y ' ax /' i = 1,2 . [2.42a1 

Here 

ri = p~hUo . [2.42b] 
#1 

Following the pattern outlined in section 2.2 one obtains after some transformations and 
upon substituting the polynomials [2.11] and [2.12] into [2.41] and [2.42] 

Pi(x, y) = Pff + A&(x, y), i = I. 2. [2.43] 

Here P1 s, P: s are given by the expressions [2.15], [2.16] and 

[Y6 ,A  a / /  I2 Y' n_Bn)+Y__;[A1B1" AlUB1 5A1,BII)] 
A p l = r l [ ] ~ l , - , l  - a l  )+g(B1B1 ~---f--+ 3 6 

[2.44a] 

Averaging [2.41] over the thickness of each layer and taking into account [2.43] and [2 .44]  

gives respectively, 

[ - w 64 - ,v ~3 2 Aln62 ] p o, ~ -  [84[B1Bf'-B,tB1 u AI~A1 ~) ~ILA,-(~)+B1 ~+'~ + B i n 6 + z a l -  = - t / , e r , [ - ~ - ~  ~ F 

+~AjIBI+ 6 B I B /  +-~-() (A 'A1m-Al tA 'n )+~ + 3 3 2 /J 

[2.45] 

[ ,  i v ( l - 6 )  4 , n i v ( l - 6 )  3 +~A2n(I_~)2+B~(I_6)+ZAz]_  p o, 
2[ 2"x2 "60 -r 02 24 

=_G2_r2[(~(.B2B21II-sB2'B2U ~ - A 2 ~ z l ) + ~ A 2 1 B 2 + ~ B 2 B 2  l 

+(l--(~)6ta a nI_A21Af)+~(A2B2m_~ A2mB2 A21B2" AfB21 

On the other hand, substitution of [2.44] into the condition [2.7] yields 

4 6s [66 ,~  ~ . 
[-a m ~ ± u m ._~_] + r, IT8 ~.a,~, - A, ̀ 2) p2o-pl°:.2[a2llI(1-1:'~+B2llI(16')3]-.lL~l 1 2 r - !  

+ 6 4 , ~ 0 n  , ' (AtB1 n A,nBI ~A1'BIt)) r2[(1~8 8 , 6  ~ o l o l  -- BI I2) +-~-  4 3 - (A2A2II -- A212) 

I2'-L(1-6)' { A:B2n A2UB2 ~ A:tBJ)] [2.47] + ( ~  (B2B2 u - "-'2 J " - - - f - - -  \ ~  -F 3 
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Figure 6. Calculated interfaces with inertial effects. 

Equations [2.45] and [2.46] together with [2.47] and the expressions [2.47]-[2.30] define an 
ordinary differential equation for the unknown interface 8(x) which is the inertial counterpart 
of [2.31]. The system [2.45]-[2.47], [2.27]-[2.30] was solved numerically subject to the ap- 
propriate boundary conditions. Some of the numerical solutions obtained are presented in figure 
6. We point out that taking into account inertial effects virtually eliminates the interface 
nonmonotonicifies observed in the creeping approximation, and leads to an appreciable increase 
in the entrance length of the flow (see figure 5). 

It is worth mentioning that taking into account the inertial effects in the case of a 
homogeneous jet in a closed channel also appreciably increases the length of the entrance 
region and makes the vortices (analogs of the nonmonotonicity of the interface above) virtually 
unobservable (see figure 3(c) and Appendix). 

CONCLUSIONS 

(1) A relation is established between the description of the dynamics of lameila settlers based 
on considering immiscible viscous fluid flow, as suggested by Probstein et aL (1977), and the 
methods of two-phase flow theory. 

(2) The nature of the two alternative operating regimes of lamella settlers found by Probstein et 
al. (1977) is clarified. To this end a two-dimensional model was developed of a steady flow of 
viscous immiscible fluids in a channel. On the basis of this model a correspondence was established 
between the development of one of the alternative flow regimes and conditions at the entrance to 
the channel. The possibility was pointed out of a nonmonotonic interface behavior for certain 
entrance conditions in the regime of creeping flow. In the inertial regime the interface behaved 
essentially monotonically and an increase was observed in the entrance length of the flow as 
compared with that for the creeping regime. 
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A P P E N D I X  

2.4 Decay of a homogeneous jet in a "dead-ended" channel 
Consider a semi-infinite channel, closed at infinity and filled with a homogeneous viscous fluid. 

Let a slow jet of the same fluid be introduced to a part of the open end of the channel (at the same time 
an appropriate amount of fluid is leaving the channel through its open end, so that the total volume 
flux through the channel is equal to zero). We seek the velocity distribution within the channel. 

The appropriate boundary value problem may be written 

OP 
AU = - -  [AI] 

Ox 

AV =--°P [A2] 
Oy 

~UF~V 0 ax IA31 

urn:o= vl :o = ul =, = vI :, = o [A41 

fo ' U dy = 0 [AS] 

where the coordinate axes are directed as indicated in figure 3(a). Recall that we are looking for 
solutions bounded as x ~ 2. 

Let us apply to the solution of [A1]-[A5] the integral method described in section 2.2. The 
simplest polynomial approximation for U(x, y) leading to U(x, y)# 0 over the entire channel 

will be a cubic with respect to y. Thus, we assume 

U(x, y) = A(x)y 3 + B(x)Y 2 + C(x) y. [A6] 

Substitution of [A6] into [A4] and [AS] gives 

A + B + C = O  [A7] 

A B C ^ [AS] 
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The integral form of the momentum equation [A1] assumes the form, similar to [2.20], 

Air BtV C1V At t+~B n +C u 
120 +-~-- + - ~ -  +-'2- + 3A + 2B --- Po t, [A9] 

where Po is an unknown function of x analogous to PI ° in [2.19]. 
Because of the cubic approximation, the set of equations [A7]-[A9] has to be supplemented 

with an integral equation for mechanical energy balance of the form 

fo I U(V2U--~-x)dy=O. [Al0a] 

Substitution of [A6] into [A10a] gives after integration and after taking into account [A7] and 
[A81, 

1 tv 2 u 
1 - - ~ A  -~-~A +~0=0.  [A10b] 

The solution of [A10b] bounded as x-->~ is of the form 

A = A0 e -gz~ cos (K2x + a) [All] 

where Ao, a are integration constants, determined by the conditions at x = 0 and where 

KI = 4.20, K2 - 2.44. 

One concludes from [A11] that the creeping jet described here decomposes into a sequence 
of sign altering eddies with intensities decaying exponentially towards the closed end of the 
channel (a sketch of the corresponding streamlines is shown in figure 3b). The problem of a 
creeping jet in a closed channel was solved by Moffat (1964) by a different method. We 
reproduce below the data from Moffat (1964) for KI, K2, denoting them by a bar on top. 

KI = 4.21, /~2 = 2.26. 

The agreement with our approximate values given above is very close and supports the use of 
the integral method described for solving the system [2.1]-[2.12] for a nonhomogeneous fluid 
flowing in a channel. 

We point out here that neglecting transverse pressure variations in [A1]-[A5] would lead to 
a reduction of the order of [A10b] from fourth to second, and as a result, to a monotonic decay 
of the jet (without decomposing into vorticies). 

Finally, inclusion of the inertial terms in [All, [A2] leads, instead of [Al0b], to a nonlinear 
equation: 

1 ~v 2 n 221 I A - I ~  A - ~ A + "-~-~ AA +~-~=0. [Al2] 

Equation [A12] was solved numerically. A scheme of a typical behaviour of the solution of 
[AI2] for Al~=o = 0(1) is presented in figure 3(c) and can be described as follows. The entering 
disturbance decays montonically, on a length scale about 20 times greater than the one in the 
creeping case ([A10b]), until its magnitude decreases about 100 times as compared with the 
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entrance value after which the creeping regime, with its typical decomposition into vortices, 
takes over. Such a behaviour of the solution of [A12] makes vortices virtually unobservable in 
the inertial case. The analog of this in the nonhomogeneous case is a considerable increase in 
the entrance length in the inertial regime, as compared to the creeping regime and a virtual 
disappearance of the nonmonotonicities of the interface. 


